मुंबई
वेगाने बदलणार्‍या क्षीण चुंबकीय क्षेत्राचा अभ्यास करण्यासाठी हिऱ्यांचा वापर

प्रतिमा: प्रयोगाची मांडणी (श्रेय: प्रा. कस्तुरी साहा)

गेल्या काही दशकांमध्ये चलचित्र तंत्रामध्ये प्रचंड उत्क्रांती घडून आली आहे. आपण सगळेजण अतिशय धूसर आणि कधी जेमतेम दिसणारे व्हिडीओ बघत लहानाचे मोठे झालो आहोत. आता मात्र नवीन तंत्रज्ञानामुळे आपल्याला वास्तवाचे तंतोतंत चित्र उभे करणारे व्हिडिओ बघायला मिळतात. अनेक वर्षांमध्ये इमेजिंग तंत्रज्ञानात झालेल्या प्रगतीमुळे ही उत्क्रांती घडून आलेली दिसते. सुरुवातीला अठराव्या शतकात ल्यूमियर बंधूंनी वापरलेल्या १६ फ्रेम प्रति सेकंद (फ्रेम पर सेकंद - एफपीएस) एवढा कमी फ्रेम रेट असलेल्या व्हिडिओपासून ते आता गेमिंगसाठी वापरल्या जाणाऱ्या सुमारे १५० एफपीएस एवढ्या प्रचंड फ्रेम्सपर्यंत ही प्रगती झाली आहे. या तंत्रज्ञानाचा वापर आपण मनोरंजनाव्यतिरिक्त जीवशास्त्रामध्ये करू शकतो का? मानवी शरीरातील गुंतागुंतीच्या क्रियांच्या प्रतिमा तयार करण्यासाठी आणि त्या समजून घेण्यासाठी- जसे की, मानवी मेंदू मधील चेतापेशींची (न्यूरॉन्स) क्रिया जाणून घेण्यासाठी - हे तंत्रज्ञान वापरता येईल का?

इंडियन इन्स्टिट्यूट ऑफ टेक्नॉलॉजी मुंबई (आयआयटी मुंबई) येथील फोटॉनिक्स अँड क्वांटम एनेबल्ड सेन्सिंग टेक्नॉलॉजी लॅब यांनी हाती घेतलेल्या एका अभिनव प्रयोगाद्वारे या प्रयोगशाळेच्या प्रमुख प्रा. कस्तुरी साहा आणि त्यांच्या सहकाऱ्यांनी जास्त एफपीएस असलेल्या वैशिष्ट्यपूर्ण कॅमेऱ्याच्या क्षमतांचा वापर करून अत्यंत क्षीण चुंबकीय क्षेत्राच्या वेळेनुरूप बदलणार्‍या किंवा ‘गतिशील’ म्हणता येईल अशा पद्धतीच्या प्रतिमा गोळा केल्या आहेत. अशा प्रकारचे चुंबकीय क्षेत्र चेतापेशींमध्ये आढळते. यावर आधारित शोधनिबंध सायंटिफिक रिपोर्ट्स या जर्नलमध्ये प्रसिद्ध झाला आहे

मानवी मेंदूच्या अंतर्गत रचनेचा अभ्यास करण्यासाठी आपण मॅग्नेटिक रेझोनन्स इमेजिंग (एमआरआय) किंवा मॅग्नेटोएन्सीफॅलोग्राफी (एमइजी) आणि फंक्शनल मॅग्नेटिक रेझोनन्स इमेजिंग (एफएमआरआय) यासारख्या इमेजिंग तंत्रज्ञानाचा वापर करतो. हे तंत्रज्ञान चेतापेशींच्या एकत्रित हालचालींचे छायाचित्रण देणारे विद्युतचुंबकीय संकेत मोजण्याचे काम करते. शिवाय, हे संकेत अत्यंत क्षीण असतात त्यामुळे ते ओळखता यावेत यासाठी या तंत्रज्ञानात अवजड आणि प्रचंड शक्तिशाली चुंबक वापरावे लागतात. त्यामुळे कार्यक्षम तंत्रज्ञान वापरून चेतापेशींमधून येणारे क्षीण संकेत ओळखण्याची क्षमता कशी वाढवावी हा एक अत्यंत महत्त्वाचा प्रश्न आहे. चेताविज्ञान शाखा आणि वैद्यकीय समुदाय या प्रश्नाचे उत्तर शोधण्यासाठी प्रयत्न करत आहेत.

हिऱ्याच्या स्फटिक जालक (क्रिस्टल लॅटिस) रचनेमध्ये खूपदा काही उणीवा आढळतात. त्यातील एक उणीव म्हणजे हिऱ्याच्या स्फटिक जालकामध्ये असलेल्या रिकाम्या जागेशेजारी नायट्रोजनचा एक अणू असतो. नायट्रोजन व्हेकन्सी (एनव्ही) म्हणजेच नायट्रोजनची रिकामी जागा असलेल्या या उणीव केंद्रापाशी काही मुक्त इलेक्ट्रॉन्स असतात. चुंबकीय क्षेत्र आणि तापमान यांसारख्या बाह्य घटकांचा त्यांच्यावर प्रचंड परिणाम होऊ शकतो. म्हणून त्यांचा वापर क्षीण पण तरीही अत्यंत संवेदनशील चुंबकीय क्षेत्राचे सूक्ष्म पातळीवर मोजमाप करणारे अनोखे पुंज शोधाग्र (क्वांटम प्रोब) म्हणून करता येतो. या इलेक्ट्रॉन्सची चुंबकीय क्षेत्राशी अभिक्रिया होऊन जो कमी तीव्रतेचा प्रकाश बाहेर पडतो तो टिपून हे बदल थेट मोजता येतात. या बाहेर पडणाऱ्या प्रकाशाला फोटोल्युमिनसन्स (प्रकाशदीप्ती) असे देखील म्हणतात. एनव्हीचे अनोखे गुणधर्म अत्यंत संवेदनशील व लहान मॅग्नेटोमीटर्समध्ये पकडून संशोधक त्यांचा वापर करून घेतात. ही अणूच्या आकाराएवढी मॅग्नेटोमीटर्स अत्यंत लहान आकारातील चुंबकीय क्षेत्राची प्रतिमा आपल्याला देऊ शकतात. 

सध्या उपलब्ध असलेले एनव्हीवर आधारित मॅग्नेटोमीटर्स ज्या वेगाने चुंबकीय क्षेत्रातला बदल पकडू शकतात त्यापेक्षा कितीतरी अधिक वेगाने चेतासंस्थेतील चुंबकीय क्षेत्रे बदलत असतात. सध्या उपलब्ध असलेले एनव्ही मॅग्नेटोमीटर्स वापरून जर उच्च रिझोल्युशन असलेली प्रतिमा घ्यायची असेल तर त्यासाठी काही मिनिटांपासून ते काही तासांपर्यंतचा कालावधी लागतो. यामुळे त्यापेक्षा अधिक वेगाने बदलणाऱ्या कुठल्याही गोष्टीचे चलचित्रीकरण(व्हिडीओ) करता येत नाही तर केवळ स्थिर प्रतिमा घेता येते. प्रा. साहा आणि त्यांच्या सहकारी संशोधकांच्या गटाने प्रथमच चुंबकीय क्षेत्राच्या सूक्ष्मदर्शी मांडणीमध्ये उपलब्ध असलेला वैशिष्ट्यपूर्ण ‘लॉक-इन’ कॅमेरा वापरून एक अनोखी आणि प्रायोगिकदृष्ट्या कार्यक्षम सुधारणा सादर केली आहे. त्यामुळे प्रतिमा पकडण्यासाठी लागणारा वेळ हा प्रत्येक फ्रेमसाठी अनेक मिनिटांवरून कमी होऊन १०० एफपीएस मिळण्याइतका इतका खाली आला आहे. जागतिक पातळीवर देखील सर्वप्रथमच एक सेकंदापेक्षा कमी कालावधीत कार्य करणाऱ्या चुंबकीय क्षेत्र सूक्ष्मदर्शीचे (सब-सेकंड मॅग्नेटिक फिल्ड मायक्रोस्कोपी) हे तंत्र सादर करण्यात आले आहे.

या प्रयोगाची मांडणी करताना एनव्ही दोष असलेल्या शुद्ध हिऱ्याच्या स्फटिकाचा एक अत्यंत पातळ पापुद्रा दोन प्रकारच्या चुंबकीय क्षेत्राच्या स्रोतांवर ठेवतात. त्यापैकी एक स्रोत म्हणजे अत्यंत पातळ सूक्ष्मदर्शक तार (किंवा ‘मायक्रोवायर’) आणि दुसरा स्रोत तारेची सूक्ष्मदर्शी गुंडाळी (किंवा ‘मायक्रोकॉइल’) असतो. मिलीसेकंदागणिक बदलणाऱ्या मायक्रोवेव वारंवारतेच्या मदतीने एनव्ही केंद्रकाच्या फिरक्यांमध्ये (स्पिन) बदल घडवून चुंबकीय क्षेत्रामध्ये परिणामी बदल घडवून आणतात. हिऱ्याच्या स्फटिकामधल्या एनव्ही दोषाच्या केंद्रकाशी संवाद साधून हे वेगाने बदलणारे चुंबकीय क्षेत्र पकडले जाते. यामध्ये कमी तीव्रतेच्या प्रकाशाचे फोटोल्युमिनसन्स तयार होते.

मात्र या प्रयोगातील खरी कल्पकता चुंबकिय क्षेत्र ओळखण्यासाठी उच्च एफपीएस असलेल्या लॉक-इन कॅमेऱ्याचा प्राध्यापक साहा यांच्या गटाने कसा वापर केला यामध्ये आहे. लॉक-इन कॅमेऱ्याची आपल्या नेहमीच्या कॅमेऱ्याशी तुलना केली असता लॉक-इन कॅमेऱ्यामध्ये प्रत्येक पिक्सेल हा फक्त विशिष्ट वारंवारतेचा किंवा ठराविक कालावधीच्या आंदोलनांचा समावेश असलेल्या प्रकाशातील बदल टिपू शकतो आणि इतर वारंवारतेने होणारे प्रकाशातील बदल मात्र टिपत नाही. यामुळे लॉक-इन कॅमेऱ्याला मिळणाऱ्या संकेतांची तीव्रता चांगली ठरते आणि एनव्ही केंद्रकातून येणाऱ्या अतिशय कमी प्रकाशातील इमेजिंगसाठी देखील लॉक-इन कॅमेरा वापरता येतो. याचा परिणाम म्हणजे संशोधकांना मायक्रोवायर आणि मायक्रोकॉइल यामधून येणाऱ्या चुंबकीय क्षेत्राचे चलचित्रीकरण करणे शक्य झाले. त्यासाठी त्यांनी एनव्ही केंद्रकातून येणारा प्रकाश पकडण्यासाठी लॉक-इन कॅमेरा ट्यून करून चुंबकीय क्षेत्रातील प्रत्येक बदल पकडला. या शोधनिबंधाचे प्रमुख लेखक मधुर पराशर सांगतात, “या प्रयोगामध्ये प्रतिमांकन करण्यासाठी चुंबकीय क्षेत्र सूक्ष्मदर्शीचा वापर केला जातो. हे उपकरण नेहमीच्या प्रकाश सूक्ष्मदर्शीसारखेच आहे. त्यामुळे मायक्रोसर्किट्समधील विद्युतधारा वाहून नेणाऱ्या अतिशय सूक्ष्म (१ मायक्रॉन ते १०० मायक्रॉन या श्रेणीतील) चुंबकीय क्षेत्रांचे प्रतिमांकन करण्यासाठी हे उपकरण वापरता येते. पुढे या पद्धतीचा जीवशास्त्रात वापर करून चेतापेशींमध्ये आढळणाऱ्या गतिशील चुंबकीय क्षेत्रांचे प्रतिमांकन करता येऊ शकते.”

एनव्हीवर आधारित सूक्ष्मदर्शीमध्ये सस्तन प्राण्यांच्या मेंदूतील क्रिया टिपण्यासाठी विश्वासार्ह पर्यायी तंत्रज्ञान बनण्याची क्षमता आहे हे या प्रयोगाद्वारे दिसते. अणूरूप घटकांच्या पुंज गुणधर्मांचा वापर करून सूक्ष्म विद्युतचुंबकीय क्षेत्राचे अचूक संवेदन करण्याचा हा मार्ग ‘क्वांटम सेन्सिंग’ (पुंज संवेदन) या आगामी क्षेत्राचा मुख्य भाग आहे. "भारताच्या संदर्भात विचार करता क्वांटम सेन्सिंग हे क्षेत्र पूर्णपणे नवीन आहे. तसेच देशात अशा प्रकारचा क्वांटम डायमंड मायक्रोस्कोप सर्वप्रथम आमच्या प्रयोगशाळेने तयार केला आहे. त्याच्या मदतीने आपण केवळ जीवशास्त्रीय संवेदनच नव्हे तर पुंज पदार्थ(क्वांटम मटेरियल) आणि इतर बऱ्याच गोष्टींचा अभ्यास करू शकतो,” असे प्रा. साहा यांनी शेवटी सांगितले. 

Marathi

Recent Stories

लेखक
Representative image of rust: By peter731 from Pixabay

दोन भिन्न विद्युतरासायनिक तंत्रांचा एकत्रित उपयोग करून संशोधकांनी औद्योगिक दृष्ट्या महत्त्वाच्या धातूवरील कोटिंग्जचा ऱ्हास किती वेगाने होतो याचे प्रभावीपणे मूल्यांकन केले.

लेखक
प्रतिकात्मक चित्र: सौजन्य पिक्साहाईव्ह

आपत्ती ससज्जता आणि आर्थिक संरक्षणाची दिशा देण्यासाठी राज्याच्या अर्थ नियोजनावर आपत्तीच्या परिणामाचे मूल्यांकन करायला संशोधकांनी डिसास्टर इंटेन्सिटी इंडेक्स (आपत्ती तीव्रता निर्देशांक) वापरला.

लेखक
Lockeia gigantus trace fossils found from Fort Member. Credit: Authors

ಜೈ ನಾರಾಯಣ್ ವ್ಯಾಸ್ ವಿಶ್ವವಿದ್ಯಾಲಯದ ಸಂಶೋಧಕರು ಜೈಸಲ್ಮೇರ್ ನಗರದ ಬಳಿಯ ಜೈಸಲ್ಮೇರ್ ರಚನೆಯಲ್ಲಿ ಲಾಕಿಯಾ ಜೈಗ್ಯಾಂಟಸ್ ಪಳೆಯುಳಿಕೆಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ. ಇದು ಭಾರತದಿಂದ ಇಂತಹ ಪಳೆಯುಳಿಕೆಗಳ ಮೊದಲ ದಾಖಲೆ ಮಾತ್ರವಲ್ಲ, ಇದುವರೆಗೆ ಪತ್ತೆಯಾದ ಅತಿದೊಡ್ಡ ಲಾಕಿಯಾ ಕುರುಹುಗಳು.

लेखक
ಇಂಡೋ-ಬರ್ಮೀಸ್ ಪ್ಯಾಂಗೊಲಿನ್ (ಮನಿಸ್ ಇಂಡೋಬರ್ಮಾನಿಕಾ). ಕೃಪೆ: ವಾಂಗ್ಮೋ, ಎಲ್.ಕೆ., ಘೋಷ್, ಎ., ಡೋಲ್ಕರ್, ಎಸ್. ಮತ್ತು ಇತರರು.

ಕಳ್ಳತನದಿಂದ ಸಾಗಾಟವಾಗುತ್ತಿದ್ದ ಹಲವು ಪ್ರಾಣಿಗಳ ನಡುವೆ ಪ್ಯಾಂಗೋಲಿನ್ ನ ಹೊಸ ಪ್ರಭೇದವನ್ನು ಪತ್ತೆ ಮಾಡಲಾಗಿದೆ.

लेखक
ಸ್ಪರ್ಶರಹಿತ ಬೆರಳಚ್ಚು ಸಂವೇದಕದ ಪ್ರಾತಿನಿಧಿಕ ಚಿತ್ರ

ಸಾಧಾರಣವಾಗಿ, ಫೋನ್ ಅನ್ನು ಅನ್ಲಾಕ್ ಮಾಡುವಾಗ ಅಥವಾ ಕಛೇರಿಯಲ್ಲಿ ಬಯೋಮೆಟ್ರಿಕ್ ಸ್ಕ್ಯಾನರುಗಳನ್ನು ಬಳಸುವಾಗ, ನಿಮ್ಮ ಬೆರಳನ್ನು ಸ್ಕ್ಯಾನರಿನ ಮೇಲ್ಮೈಗೆ ಒತ್ತ ಬೇಕಾಗುತ್ತದೆ. ಬೆರಳಚ್ಚುಗಳನ್ನು ಸೆರೆಹಿಡಿಯುವುದು ಹೀಗೆ. ಆದರೆ, ಹೊಸ ಸಂಶೋಧನೆಯೊಂದು ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಇನ್ನಷ್ಟು ಸ್ವಚ್ಛ, ಸುಲಭ ಮತ್ತು ಹೆಚ್ಚು ನಿಖರವಾಗಿಸುವ ವಿಧಾನವನ್ನು ರೂಪಿಸಿದೆ. ಸಾಧನವನ್ನು ಮುಟ್ಟದೆಯೇ ಬೆರಳಚ್ಚನ್ನು ಸಂಗ್ರಹಿಸುವ ಮಾರ್ಗವನ್ನು ಹುಡುಕಿದೆ.

लेखक
ಮೈಕ್ರೋಸಾಫ್ಟ್ ಡಿಸೈನರ್ ನ ಇಮೇಜ್ ಕ್ರಿಯೇಟರ್ ಬಳಸಿ ಚಿತ್ರ ರಚಿಸಲಾಗಿದೆ

ಐಐಟಿ ಬಾಂಬೆಯ ಸಂಶೋಧಕರು ಶಾಕ್‌ವೇವ್-ಆಧಾರಿತ ಸೂಜಿ-ಮುಕ್ತ ಸಿರಿಂಜ್ ಅನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ. ಈ ಮೂಲಕ ಸೂಜಿಗಳಿಲ್ಲದೆ ಔಷಧಿಗಳನ್ನು ಪೂರೈಸುವ ಮಾರ್ಗವನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ.

लेखक
ಅತ್ಯಂತ ಪ್ರಾಚೀನ ವಸ್ತುವಿನ ಅಧ್ಯಯನ

ಹಯಾಬುಸಾ ಎಂದರೆ ವೇಗವಾಗಿ ಚಲಿಸುವ ಜಪಾನೀ ಬೈಕ್ ನೆನಪಿಗೆ ತಕ್ಷಣ ಬರುವುದು ಅಲ್ಲವೇ? ಆದರೆ ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ - (ಜಾಕ್ಸ, JAXA) ತನ್ನ ಒಂದು ನೌಕೆಯ ಹೆಸರು ಹಯಾಬುಸಾ 2 ಎಂದು ಇಟ್ಟಿದ್ದಾರೆ. ಈ ನೌಕೆಯನ್ನು ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ ಸೌರವ್ಯೂಹದಾದ್ಯಂತ ಸಂಚರಿಸಿ ರುಯ್ಗು (Ryugu) ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸಂಪರ್ಕ ಸಾಧಿಸುವ ಉದ್ದೇಶದಿಂದ  ಡಿಸೆಂಬರ್ 2014 ರಲ್ಲಿ ಉಡಾವಣೆ ಮಾಡಿತ್ತು. ಇದು ಸುಮಾರು ಮೂವತ್ತು ಕೋಟಿ (300 ಮಿಲಿಯನ್) ಕಿಲೋಮೀಟರ್ ದೂರ ಪ್ರಯಾಣಿಸಿ 2018 ರಲ್ಲಿ ರುಯ್ಗು ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸ್ಪರ್ಶಿಸಿತ್ತು. ಅಲ್ಲಿಯೇ ಕೆಲ ತಿಂಗಳು ಇದ್ದು ಮಾಹಿತಿ ಮತ್ತು ವಸ್ತು ಸಂಗ್ರಹಣೆ ಮಾಡಿ, 2020 ಯಲ್ಲಿ ಯಶಸ್ವಿಯಾಗಿ ಹಿಂತಿರುಗಿತ್ತು.

लेखक
ಕಾಂಕ್ರೀಟ್‌ ಪರೀಕ್ಷೆಗೆ ಪ್ರೋಬ್‌

ಕಾಂಕ್ರೀಟ್‌ನಲ್ಲಿ ಹುದುಗಿರುವ ರೆಬಾರ್‌ಗಳಲ್ಲಿನ ತುಕ್ಕು ಪ್ರಮಾಣವನ್ನು ಮಾಪಿಸಲು ವಿಜ್ಞಾನಿಗಳು ಒಂದು ಹೊಸ ತಪಾಸಕವನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ.

लेखक
‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ

ವೈರಲ್ ಸೋಂಕುಗಳು ಮತ್ತು ಸ್ವಯಂ ನಿರೋಧಕ ಕಾಯಿಲೆಗಳಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ ‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ. 

लेखक
ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳು

ಐಐಟಿ ಬಾಂಬೆ ಯ ಬ್ಯಾಟರಿ ಪ್ರೋಟೋಟೈಪಿಂಗ್ ಲ್ಯಾಬ್ ನ ಸಂಶೋಧಕರು ಇಂಧನ (ಶಕ್ತಿ) ಶೇಖರಣಾ ಸಾಧನವಾಗಿರುವ ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸುತ್ತಿದ್ದಾರೆ. 

Loading content ...
Loading content ...
Loading content ...
Loading content ...
Loading content ...