मुंबई
कक्ष तपमानाला क्वांटम इन्फर्मेशन प्रोसेसिंग करण्यासाठी नवीन दृष्टिकोन

काही अणूंएवढी जाडी असलेली सामग्री वापरून तयार केलेल्या नॅनोचिप्स चा उपयोग क्वांटम संगणनासाठी करण्याचा संशोधकांचा प्रस्ताव

ज्या संगणनासाठी आजच्या अगदी प्रगत सूपरकम्प्यूटर्सना सुद्धा १०००० वर्षे लागू शकतात ते संगणन गुगलचे क्वांटम प्रोसेसर निव्वळ २०० सेकंदात करू शकतात असा दावा ऑक्टोबर २०१९ मध्ये गुगल ने केला. आयबीएमने ह्या दाव्याला आव्हान दिले असले, तरी असे क्रांतिकारी बदल अगदीच अशक्य नाहीत. क्वांटम संगणक, ह्या अगदी मूलभूतपणे नवीन असलेल्या तंत्रज्ञानामुलळे हे शक्य होऊ शकते.

क्वांटम संगणकांबद्दलचे संशोधन अजूनही जरी नवजात अवस्थेत असले तरी संगणन जगतात क्वांटम संगणक क्रांती घडवू शकतात, इतके आपल्याला कळले आहे. त्यांच्यात केवळ संगणन जलद करण्याची क्षमताच आहे असे नाही तर आजच्या काळतील संगणकांसाठी शक्य नसलेली, उदाहरणार्थ माहिती कूटबद्धीकरण (एनक्रिप्शन), ह्यांच्याद्वारे शक्य होईल. पण हे करण्यात एक मोठी अडचण आहे. सध्यातरी क्वांटम माहिती प्रक्रिया निरपेक्ष शून्य तपमानाच्या  (-२७.३ डिग्री सेल्सियस) जवळपास असलेल्या तपमानाला करावे लागते. तुलनेदाखल, पृथ्वीवर नैसर्गिकपणे असलेले कमीतकमी तपमान -९३.२ डिग्री सेल्सियस इतकेच आहे.

भारतीय तंत्रज्ञान संस्था मुंबई येथील संशोधकांनी कक्ष तपमानाला क्वांटम माहिती-विश्लेषण करण्यासाठी एक नवीन रचना प्रस्तावित केली आहे. विशिष्ट सामग्रीचे थर एकावर एक ठेवून केलेल्या राशीच्या स्वरूपात याची संरचना आहे. भारतीय सरकारच्या विज्ञान व तंत्रज्ञान विभागाकडून अर्थसहाय्य लाभलेला हा अभ्यास फिजिकल रिव्ह्यू बी ह्या कालिकात प्रकाशित झाला आहे.  

सध्याच्या संगणकांमध्ये गणनेचे मूलभूत एकक बिट असतात, ज्यांच्या २ स्थिती शक्य असतात, ० किंवा १. क्वांटम संगणनात मूलभूत एकक क्यूबिट असते. क्यूबिट प्रत्यक्षात आणण्याच्या अनेक पद्धतींपैकी एक म्हणजे व्हॅली मटेरियल्स किंवा दरी सामग्रीचा उपयोग. दरी सामग्री हे असे पदार्थ असतात, ज्यामध्ये त्यातील इलेक्ट्रॉनच्या शक्य असलेल्या  शक्तीच्या पातळ्यांचा आकार एखाद्या दरीप्रमाणे असतो. ह्या दरी दोन प्रकारच्या असतात, ज्यामुळे क्यूबिट च्या दोन स्थिती शक्य होतात. 

क्वांटम भौतिकशास्त्रात, कणांची स्थिती, शक्य असलेल्या स्थितींचे रेषीय अधिस्थापन (लिनियर सुपरपोजिशन) असते. हे रेषीय अधिस्थापन जतन झाल्याने किंवा त्यात ससंजकता असल्याने क्यूबिट शक्य होतात. पण कालापरत्वे ससंजकता कमी होत जाते. कक्ष तपमान वाढले की ह्याची शक्यता अधिक असते. क्वांटम संगणनाचे खरे आव्हान, कक्ष तपमानाला क्यूबिट प्रत्यक्षात आणणे हेच आहे.

सदर अभ्यासात संशोधकांनी दोन सैद्धांतिक संच तयार केले ज्यामध्ये कक्ष तपमानालाही क्वांटम ससंजकता राखणे शक्य आहे. सदर दोन संचांसाठी त्यांनी ग्राफीन चे दोन वेगवेगळे प्रकार दरी सामग्री (व्हॅली मटेरियल्स) म्हणून निवडले. ही दरी सामग्री, संशोधकांनी ‘एक्सायटॉन’ नावाच्या कणाचे ससंजग अधिस्थापन (कोहेरंट सुपरपोजिशन) करू शकणाऱ्या सामग्रीवर रचली. ह्या सामग्रीशिवाय एक्सायटॉन दरी स्थितीमध्ये रहात नाहीत. 

“काही अणूंएवढी जाडी असलेले सामग्रीचे थर रचून तयार झालेले हे उपकरण १०० नॅनोमिटर पेक्षाही कमी, म्हणजे माणसाच्या केसाच्या एक हजारांश जाडीचे असते,” असे प्राध्यापक अंशुमन कुमार म्हणतात. ते भारतीय तंत्रज्ञान संस्था मुंबई येथील ऑप्टिक्स ऑफ क्वांटम मटेरियल्स प्रयोगशाळेचे नेतृत्व करतात व ह्या अभ्यासात सहभागी असलेल्या संशोधकांपैकी एक आहेत.

नंतर संशोधकांनी त्यांच्या सैद्धांतिक संचामध्ये विद्युतस्थितिकी व्होल्टतेचा (इलेक्ट्रिस्टॅटिक व्होल्टेज) समावेश केला व दरी स्थतींच्या ससंजगतेचे गणन केले. त्यांनी निष्कर्ष काढला की दोनही संचात कक्ष तपमानाला सुद्धा ससंजित दरी स्थिती असणे शक्य आहे. ह्या स्थिती क्वांटम माहितीसाठी, म्हणजेच क्यूबिट साठी मूलभूत घटक असू शकतात.

सामग्रीची जाडी आणि विद्युतस्थितिकी व्होल्टतेचा उपयोग, वेगवेगळ्या तपमानाला संसजकतेचे प्रमाण निश्चित करण्यासाठी केला जाऊ शकतो.

“विद्युतस्थितिकी व्होल्टतेचा उपयोग करून क्वांटम स्थिती नियंत्रित करणे शक्य असल्यामुळे, तांत्रिकदृष्ट्या क्वांटम स्थिती प्रत्यक्षात आणणे शक्य आहे,” प्रा. कुमार, हे सैद्धांतिक संशोधन प्रत्यक्षात आणण्याचे महत्त्व अधोरेखित करताना सांगतात. पण अर्थातच आव्हाने आहेत. ते पुढे म्हणतात, “सामग्रीची शुद्धता अत्यंत उच्च असणे आवश्यक आहे, व आकार सूक्ष्म किंवा अतिसूक्ष्म (नॅनोस्केल) असताना, अशी शुद्धता साध्य करणे आव्हानात्मक आहे.”

मोठ्या प्रमाणावर दरी सामग्रीचे उत्पादन पुढील काही वर्षांत शक्य होईल, पण इतकी पातळ सामग्री एकसमान करणे शक्य होण्यासाठी अजून काही वर्षे लागतील.

सक्रीय प्रयोगशीलता व सैद्धांतिक अभ्यास यांच्या सतत सहयोगानेच पुढील प्रगती शक्य होईल. सध्या संशोधक सामग्री प्रत्यक्ष निर्माण करण्यासाठी प्रयोग करत आहेत. सामग्री निर्माणातील तांत्रिक आव्हाने पेलण्यासाठी सामग्रीत आवश्यक ते बदलही ते करून बघत आहेत. 
 

Marathi

Recent Stories

लेखक
Research Matters
Representative image of rust: By peter731 from Pixabay

दोन भिन्न विद्युतरासायनिक तंत्रांचा एकत्रित उपयोग करून संशोधकांनी औद्योगिक दृष्ट्या महत्त्वाच्या धातूवरील कोटिंग्जचा ऱ्हास किती वेगाने होतो याचे प्रभावीपणे मूल्यांकन केले.

लेखक
Research Matters
प्रतिकात्मक चित्र: सौजन्य पिक्साहाईव्ह

आपत्ती ससज्जता आणि आर्थिक संरक्षणाची दिशा देण्यासाठी राज्याच्या अर्थ नियोजनावर आपत्तीच्या परिणामाचे मूल्यांकन करायला संशोधकांनी डिसास्टर इंटेन्सिटी इंडेक्स (आपत्ती तीव्रता निर्देशांक) वापरला.

लेखक
Research Matters
Lockeia gigantus trace fossils found from Fort Member. Credit: Authors

ಜೈ ನಾರಾಯಣ್ ವ್ಯಾಸ್ ವಿಶ್ವವಿದ್ಯಾಲಯದ ಸಂಶೋಧಕರು ಜೈಸಲ್ಮೇರ್ ನಗರದ ಬಳಿಯ ಜೈಸಲ್ಮೇರ್ ರಚನೆಯಲ್ಲಿ ಲಾಕಿಯಾ ಜೈಗ್ಯಾಂಟಸ್ ಪಳೆಯುಳಿಕೆಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ. ಇದು ಭಾರತದಿಂದ ಇಂತಹ ಪಳೆಯುಳಿಕೆಗಳ ಮೊದಲ ದಾಖಲೆ ಮಾತ್ರವಲ್ಲ, ಇದುವರೆಗೆ ಪತ್ತೆಯಾದ ಅತಿದೊಡ್ಡ ಲಾಕಿಯಾ ಕುರುಹುಗಳು.

लेखक
Research Matters
ಇಂಡೋ-ಬರ್ಮೀಸ್ ಪ್ಯಾಂಗೊಲಿನ್ (ಮನಿಸ್ ಇಂಡೋಬರ್ಮಾನಿಕಾ). ಕೃಪೆ: ವಾಂಗ್ಮೋ, ಎಲ್.ಕೆ., ಘೋಷ್, ಎ., ಡೋಲ್ಕರ್, ಎಸ್. ಮತ್ತು ಇತರರು.

ಕಳ್ಳತನದಿಂದ ಸಾಗಾಟವಾಗುತ್ತಿದ್ದ ಹಲವು ಪ್ರಾಣಿಗಳ ನಡುವೆ ಪ್ಯಾಂಗೋಲಿನ್ ನ ಹೊಸ ಪ್ರಭೇದವನ್ನು ಪತ್ತೆ ಮಾಡಲಾಗಿದೆ.

लेखक
Research Matters
ಸ್ಪರ್ಶರಹಿತ ಬೆರಳಚ್ಚು ಸಂವೇದಕದ ಪ್ರಾತಿನಿಧಿಕ ಚಿತ್ರ

ಸಾಧಾರಣವಾಗಿ, ಫೋನ್ ಅನ್ನು ಅನ್ಲಾಕ್ ಮಾಡುವಾಗ ಅಥವಾ ಕಛೇರಿಯಲ್ಲಿ ಬಯೋಮೆಟ್ರಿಕ್ ಸ್ಕ್ಯಾನರುಗಳನ್ನು ಬಳಸುವಾಗ, ನಿಮ್ಮ ಬೆರಳನ್ನು ಸ್ಕ್ಯಾನರಿನ ಮೇಲ್ಮೈಗೆ ಒತ್ತ ಬೇಕಾಗುತ್ತದೆ. ಬೆರಳಚ್ಚುಗಳನ್ನು ಸೆರೆಹಿಡಿಯುವುದು ಹೀಗೆ. ಆದರೆ, ಹೊಸ ಸಂಶೋಧನೆಯೊಂದು ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಇನ್ನಷ್ಟು ಸ್ವಚ್ಛ, ಸುಲಭ ಮತ್ತು ಹೆಚ್ಚು ನಿಖರವಾಗಿಸುವ ವಿಧಾನವನ್ನು ರೂಪಿಸಿದೆ. ಸಾಧನವನ್ನು ಮುಟ್ಟದೆಯೇ ಬೆರಳಚ್ಚನ್ನು ಸಂಗ್ರಹಿಸುವ ಮಾರ್ಗವನ್ನು ಹುಡುಕಿದೆ.

लेखक
Research Matters
ಮೈಕ್ರೋಸಾಫ್ಟ್ ಡಿಸೈನರ್ ನ ಇಮೇಜ್ ಕ್ರಿಯೇಟರ್ ಬಳಸಿ ಚಿತ್ರ ರಚಿಸಲಾಗಿದೆ

ಐಐಟಿ ಬಾಂಬೆಯ ಸಂಶೋಧಕರು ಶಾಕ್‌ವೇವ್-ಆಧಾರಿತ ಸೂಜಿ-ಮುಕ್ತ ಸಿರಿಂಜ್ ಅನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ. ಈ ಮೂಲಕ ಸೂಜಿಗಳಿಲ್ಲದೆ ಔಷಧಿಗಳನ್ನು ಪೂರೈಸುವ ಮಾರ್ಗವನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ.

लेखक
Research Matters
ಅತ್ಯಂತ ಪ್ರಾಚೀನ ವಸ್ತುವಿನ ಅಧ್ಯಯನ

ಹಯಾಬುಸಾ ಎಂದರೆ ವೇಗವಾಗಿ ಚಲಿಸುವ ಜಪಾನೀ ಬೈಕ್ ನೆನಪಿಗೆ ತಕ್ಷಣ ಬರುವುದು ಅಲ್ಲವೇ? ಆದರೆ ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ - (ಜಾಕ್ಸ, JAXA) ತನ್ನ ಒಂದು ನೌಕೆಯ ಹೆಸರು ಹಯಾಬುಸಾ 2 ಎಂದು ಇಟ್ಟಿದ್ದಾರೆ. ಈ ನೌಕೆಯನ್ನು ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ ಸೌರವ್ಯೂಹದಾದ್ಯಂತ ಸಂಚರಿಸಿ ರುಯ್ಗು (Ryugu) ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸಂಪರ್ಕ ಸಾಧಿಸುವ ಉದ್ದೇಶದಿಂದ  ಡಿಸೆಂಬರ್ 2014 ರಲ್ಲಿ ಉಡಾವಣೆ ಮಾಡಿತ್ತು. ಇದು ಸುಮಾರು ಮೂವತ್ತು ಕೋಟಿ (300 ಮಿಲಿಯನ್) ಕಿಲೋಮೀಟರ್ ದೂರ ಪ್ರಯಾಣಿಸಿ 2018 ರಲ್ಲಿ ರುಯ್ಗು ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸ್ಪರ್ಶಿಸಿತ್ತು. ಅಲ್ಲಿಯೇ ಕೆಲ ತಿಂಗಳು ಇದ್ದು ಮಾಹಿತಿ ಮತ್ತು ವಸ್ತು ಸಂಗ್ರಹಣೆ ಮಾಡಿ, 2020 ಯಲ್ಲಿ ಯಶಸ್ವಿಯಾಗಿ ಹಿಂತಿರುಗಿತ್ತು.

लेखक
Research Matters
ಕಾಂಕ್ರೀಟ್‌ ಪರೀಕ್ಷೆಗೆ ಪ್ರೋಬ್‌

ಕಾಂಕ್ರೀಟ್‌ನಲ್ಲಿ ಹುದುಗಿರುವ ರೆಬಾರ್‌ಗಳಲ್ಲಿನ ತುಕ್ಕು ಪ್ರಮಾಣವನ್ನು ಮಾಪಿಸಲು ವಿಜ್ಞಾನಿಗಳು ಒಂದು ಹೊಸ ತಪಾಸಕವನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ.

लेखक
Research Matters
‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ

ವೈರಲ್ ಸೋಂಕುಗಳು ಮತ್ತು ಸ್ವಯಂ ನಿರೋಧಕ ಕಾಯಿಲೆಗಳಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ ‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ. 

लेखक
Research Matters
ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳು

ಐಐಟಿ ಬಾಂಬೆ ಯ ಬ್ಯಾಟರಿ ಪ್ರೋಟೋಟೈಪಿಂಗ್ ಲ್ಯಾಬ್ ನ ಸಂಶೋಧಕರು ಇಂಧನ (ಶಕ್ತಿ) ಶೇಖರಣಾ ಸಾಧನವಾಗಿರುವ ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸುತ್ತಿದ್ದಾರೆ. 

Loading content ...
Loading content ...
Loading content ...
Loading content ...
Loading content ...