मुंबई
शीघ्र आने को है : एक टेबलटॉप काइरल एटोसेकंड लेजर

कई परमाणुओं से मिलकर जब अणु निर्मित होते हैं, तो इन परमाणुओं के जुड़ने की प्रक्रिया पृथक-पृथक हो सकती है। एक ही अणु के दो रूपों की संरचना समान हो सकती है किन्तु यदि परमाणुओं की व्यवस्था पृथक-पृथक होती है तो समभारी (आइसोमर्स) बनते हैं। कुछ समभारियों में ऐसी संरचनाएं हो सकती हैं जो एक दूसरे की दर्पण छवियां (मिरर इमेज) हों। ऐसे अणुओं को काइरल अणु कहते हैं। वैज्ञानिक ऐसे अणुओं के अध्ययन में रुचि रखते हैं, उदाहरण स्वरुप पेनिसिलिन, क्योंकि इसके अणुओं की एक व्यवस्था जीवन रक्षक हो सकती है जबकि दूसरी घातक हो सकती है!

शोधकर्ता अणु की संरचना या गठन का अध्ययन करने हेतु, वांछित प्रक्रियाएं घटते समय अपने वीडियो लेने के लिए अणुओं पर प्रकाश के लघुतम स्पंद (शार्ट पल्सेस) प्रदीपित करते हैं। स्पंदन इतने लघु होते हैं कि उन्हें एटोसेकंड में ही मापा जा सकता है। एक ऐटोसेकंड एक सेकंड के अरबवें भाग का भी एक अरबवां भाग होता है (10-18)। काइरल अणुओं का अध्ययन करने के लिए आपतित प्रकाश को वृत्तीय ध्रुवीकृत (सर्कुलरली पोलेराइज़्ड) होना चाहिए। काइरल अणु की पृथक-पृथक व्यवस्था वृत्तीय ध्रुवीकृत प्रकाश के लिए पृथक-पृथक प्रतिक्रिया देती है, जिससे प्रत्येक व्यवस्था को पृथक करना संभव हो जाता है। यद्यपि ध्रुवीकृत एटोसेकंड स्पंद, काइरल अणुओं का अध्ययन करने के लिए एक उपयोगी व्यवस्था है, तथापि ऐसे प्रकाश स्पंदों को उत्पन्न करना कठिन, बहुमूल्य एवं भारी उपकरणों की आवश्यकता से युक्त हो सकता है। 

भारतीय प्रौद्योगिकी संस्थान, मुंबई  के शोधकर्ताओं ने प्राध्यापक गोपाल दीक्षित के नेतृत्व में  एक नवीन सैद्धांतिक अध्ययन के अंतर्गत ऐसी योजना का सुझाव दिया है, जो वृत्तीय रूप से ध्रुवीकृत एटोसेकंड लेजर स्पंदों (सर्कुलरली पोलेराइज़्ड एटोसेकंड लेजर पल्सेस) के स्रोत को सम्भाव्य बनाता है जो टेबल पर रखने लायक छोटा है। उनका उपाय उच्च-आवृत्ति एवं लघुतम अवधि वाले स्पन्दों को उत्पन्न करने हेतु ग्रॅफीन जैसे ठोस पदार्थ पर प्रदीपित एक ऐसे  लेजर स्रोत का उपयोग सुझाता है जो लेजर प्रकाश की एकल एवं द्वय आवृत्ति का युग्म है। यह युक्ति एकल एवं द्वय आवृत्ति वाले प्रकाश की सापेक्षिक तीव्रताओं को सीमित नहीं करती है। यह प्रकाश स्रोत की तीव्रता में किसी भी अपूर्णता के लिए सुदृढ़ है। फिजिकल रिव्यू एप्लाइड नामक शोधपत्रिका में प्रकाशित इस अध्ययन को विज्ञान एवं अभियांत्रिकी अनुसंधान परिषद (एसईआरबी) भारत द्वारा समर्थन दिया गया है। 

प्रकाश एक अनुप्रस्थ तरंग (ट्रान्सवर्स वेव) है। एस के आकार में गति करने वाले इसके कंपन इसकी यात्रा की दिशा के लंबवत होते हैं; अर्थात यात्रा करते समय तरंग ऊपर और नीचे कंपन करती है। ये कंपन प्रकाश की गति रेखा पर ऊर्ध्वाधर, क्षैतिज या इन दोनों अवस्थाओं के मध्य में किसी भी कोण पर हो सकते हैं। जब कंपन का कोण दक्षिणावर्त या वामावर्त घूमता है, जैसा कि प्रसार की गति की दिशा में दृष्टिपात करने पर देखा जाता है, प्रकाश को वृत्तीय ध्रुवीकृत (सर्कुलर्ली पोलराइज्ड) कहा जाता है। प्रकाश तरंग दाएं या बाएं ओर कुंडलित (हेलिसिटी) होती है।

शोधकर्ता मात्र कुछ एटोसेकंड लंबे लघुतम स्पंद उत्पन्न करने के लिए उच्च-हार्मोनिक्स उत्पादन नामक एक घटना का उपयोग करते हैं। एक तीव्र लेजर स्पन्द, जो इस संदर्भ में एक संचालक क्षेत्र कहलाता है, को जब क्रिप्टान गैस जैसे किसी पदार्थ पर प्रदीपित किया जाता है, तो क्रिप्टान के परमाणुओं में स्थित इलेक्ट्रॉन प्रकाश को अवशोषित कर ऊर्जा ग्रहण कर सक्रिय (एक्साइट) हो जाते हैं । जब ये इलेक्ट्रॉन विराम अवस्था पर वापस लौटते हैं, तो वे विकिरण उत्सर्जित करते हैं जिसमें उच्च हार्मोनिक्स होते हैं अर्थात ऐसी आवृत्तियाँ जो मूल लेज़र की आवृत्ति से कुछ सौ या सहस्त्र गुना अधिक होती हैं। जैसे-जैसे आवृत्ति कई गुना बढ़ती है, स्पन्दों की लंबाई अनुपातिक रूप से कम हो जाती है। इस प्रकार हमें लघुतम स्पंद प्राप्त होते हैं, जो  मात्र कुछ  ऐटोसेकंड लम्बाई के ही होते हैं।

यद्यपि, यहाँ एक बंधन है। वृत्तीय ध्रुविता के साथ एक संचालक क्षेत्र लेजर स्पंद (ड्राइविंग फील्ड लेजर पल्स) का उपयोग करना पर्याप्त तीव्रता के वृत्तीय ध्रुवित एटोसेकंड स्पन्दों को सुनिश्चित नहीं करता है। "काइरलिटी एवं चुंबकत्व से सम्बंधित घटनाओं का अध्ययन करने के लिए प्रकाश तरंग की कुण्डलता (हेलिसिटी) का नियंत्रणीय होना आवश्यक है। इन परिघटनाओं के अध्ययन में उपयोगी वृत्तीय ध्रुवित एटोसेकंड स्पन्दों को उत्पन्न करना चुनौतीपूर्ण हो जाता है", प्राध्यापक दीक्षित बताते हैं। गैसों का उपयोग करके उत्पन्न होने वाले प्रकाश की तुलना में ग्रॅफीन जैसे ठोस पदार्थों पर लेजर प्रकाश के प्रदीपन के माध्यम से वृत्तीय ध्रुवीकृत प्रकाश के अधिक तीव्र स्पन्दों को प्राप्त करना संभव हो गया है। ठोस पदार्थों का उपयोग उत्सर्जित प्रकाश स्पंदों के ध्रुवीकरण पर अतिरिक्त नियंत्रण प्रदान करता है एवं एक सघन (कॉम्पैक्ट) स्रोत को सक्षम बनाता है। 

पूर्व की एक योजना में वृत्तीय ध्रुवित उच्च-हार्मोनिक्स उत्पन्न करने के लिए विपरीत ध्रुवीकरण (अपोजिट पोलेराइजेशन) के साथ एकल एवं द्वय आवृत्ति युग्म का उपयोग किया गया था। इस व्यवस्था  से ऐसे स्पंद युग्म (पेअर ऑफ पल्सेस) प्राप्त होते हैं जिनका ध्रुवीकरण स्रोत स्पंदों के समरूप होता है। आसन्न हार्मोनिक आवृत्तियों में विपरीत कुन्डलता (हेलिसिटी) होती है (एक एकल-आवृत्ति कुन्डलता का जबकि दूसरी द्वय-आवृत्ति कुन्डलता का अनुसरण करती है)। किन्तु वे आवृत्तियाँ जो स्रोत आवृत्ति के तिगुने की गुणक हैं, अनुपस्थित हैं। किन्तु विविध उपायों जैसे कि स्रोत लेजर में आवृत्तियों की तीव्रता को परिवर्तित करना एवं पृथक-पृथक ध्रुवीकरण के साथ अतिरिक्त स्पन्दों को उत्पन्न करना आदि के द्वारा एटोसेकंड लेजर के वृत्तीय ध्रुवीकरण पर वांछित नियंत्रण प्रदान नहीं किया जा सका।

आईआईटी मुंबई की योजना समान दिशा के वृत्तीय ध्रुवीकरण के साथ एकल एवं द्वय आवृत्ति युग्म के लेजर प्रकाश का उपयोग करने का सुझाव देती है। शोध दल ने एक विशिष्ट योजना निर्मित की है जो घूर्णी समरूपता के बिना एकल एवं द्वय आवृत्ति युग्म लेजर स्रोतों का उपयोग करती है। एकल एवं द्वय स्रोत आवृत्तियों की सापेक्ष तीव्रता के अनपेक्ष, इस युक्ति के उपयोग से उत्पन्न सभी उच्च हार्मोनिक्स की कुन्डलता समान होती है।

शोधकर्ताओं ने पूर्व की योजनाओं के साथ-साथ उनकी अपनी योजना द्वारा प्राप्त स्पेक्ट्रम का निरीक्षण करने हेतु कंप्यूटर सिमुलेशन का उपयोग किया। उन्होंने देखा कि संचालक लेजर स्पंदों  की तीव्रता एवं कला (फेज) में भिन्नता (वेरिएशन) के विरुद्ध  उनका उपाय सुदृढ़ है। उनके द्वारा सुझाए गए उपाय को षटकोणीय  लैटिस वाले अन्य 2-डी पदार्थों के साथ–साथ अन्य ठोस पदार्थों तक बढ़ाया जा सकता है। शोधकर्ताओं का कहना है कि उनका कार्य "अणुओं एवं ठोस पदार्थों में उनकी प्राकृतिक समय-मापिका पर काइरल प्रकाश-पदार्थ अंत: क्रिया के अवलोकन" की सुविधा प्रदान कर सकता है।

Hindi

Recent Stories

लिखा गया
Research Matters
Industrial Pollution

हाइड्रोजन आधारित प्रक्रियाओं में उन्नत उत्प्रेरकों और नवीकरणीय ऊर्जा के समावेश से स्टील उद्योग में कार्बन विमुक्ति के आर्थिक और औद्योगिक रूप से व्यवहार्य समाधानों का विकास ।

लिखा गया
Research Matters
Representative image of rust: By peter731 from Pixabay

दो वैद्युत-रासायनिक तकनीकों के संयोजन से, शोधकर्ता औद्योगिक धातुओं पर लेपित आवरण पर संक्षारण की दर को कुशलतापूर्वक मापने में सफल रहे।

लिखा गया
Research Matters
प्रतिनिधि चित्र श्रेय: पिक्साहाइव

उत्तम आपदा प्रबंधन एवं आर्थिक सुरक्षा की दृष्टि से, राज्य की वित्त व्यवस्था पर आपदा के प्रभाव का आकलन करने हेतु ‘डिजास्टर इंटेंसिटी इंडेक्स’ का उपयोग करते शोधकर्ता

लिखा गया
Research Matters
Lockeia gigantus trace fossils found from Fort Member. Credit: Authors

ಜೈ ನಾರಾಯಣ್ ವ್ಯಾಸ್ ವಿಶ್ವವಿದ್ಯಾಲಯದ ಸಂಶೋಧಕರು ಜೈಸಲ್ಮೇರ್ ನಗರದ ಬಳಿಯ ಜೈಸಲ್ಮೇರ್ ರಚನೆಯಲ್ಲಿ ಲಾಕಿಯಾ ಜೈಗ್ಯಾಂಟಸ್ ಪಳೆಯುಳಿಕೆಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ. ಇದು ಭಾರತದಿಂದ ಇಂತಹ ಪಳೆಯುಳಿಕೆಗಳ ಮೊದಲ ದಾಖಲೆ ಮಾತ್ರವಲ್ಲ, ಇದುವರೆಗೆ ಪತ್ತೆಯಾದ ಅತಿದೊಡ್ಡ ಲಾಕಿಯಾ ಕುರುಹುಗಳು.

लिखा गया
Research Matters
ಇಂಡೋ-ಬರ್ಮೀಸ್ ಪ್ಯಾಂಗೊಲಿನ್ (ಮನಿಸ್ ಇಂಡೋಬರ್ಮಾನಿಕಾ). ಕೃಪೆ: ವಾಂಗ್ಮೋ, ಎಲ್.ಕೆ., ಘೋಷ್, ಎ., ಡೋಲ್ಕರ್, ಎಸ್. ಮತ್ತು ಇತರರು.

ಕಳ್ಳತನದಿಂದ ಸಾಗಾಟವಾಗುತ್ತಿದ್ದ ಹಲವು ಪ್ರಾಣಿಗಳ ನಡುವೆ ಪ್ಯಾಂಗೋಲಿನ್ ನ ಹೊಸ ಪ್ರಭೇದವನ್ನು ಪತ್ತೆ ಮಾಡಲಾಗಿದೆ.

लिखा गया
Research Matters
ಸ್ಪರ್ಶರಹಿತ ಬೆರಳಚ್ಚು ಸಂವೇದಕದ ಪ್ರಾತಿನಿಧಿಕ ಚಿತ್ರ

ಸಾಧಾರಣವಾಗಿ, ಫೋನ್ ಅನ್ನು ಅನ್ಲಾಕ್ ಮಾಡುವಾಗ ಅಥವಾ ಕಛೇರಿಯಲ್ಲಿ ಬಯೋಮೆಟ್ರಿಕ್ ಸ್ಕ್ಯಾನರುಗಳನ್ನು ಬಳಸುವಾಗ, ನಿಮ್ಮ ಬೆರಳನ್ನು ಸ್ಕ್ಯಾನರಿನ ಮೇಲ್ಮೈಗೆ ಒತ್ತ ಬೇಕಾಗುತ್ತದೆ. ಬೆರಳಚ್ಚುಗಳನ್ನು ಸೆರೆಹಿಡಿಯುವುದು ಹೀಗೆ. ಆದರೆ, ಹೊಸ ಸಂಶೋಧನೆಯೊಂದು ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಇನ್ನಷ್ಟು ಸ್ವಚ್ಛ, ಸುಲಭ ಮತ್ತು ಹೆಚ್ಚು ನಿಖರವಾಗಿಸುವ ವಿಧಾನವನ್ನು ರೂಪಿಸಿದೆ. ಸಾಧನವನ್ನು ಮುಟ್ಟದೆಯೇ ಬೆರಳಚ್ಚನ್ನು ಸಂಗ್ರಹಿಸುವ ಮಾರ್ಗವನ್ನು ಹುಡುಕಿದೆ.

लिखा गया
Research Matters
ಮೈಕ್ರೋಸಾಫ್ಟ್ ಡಿಸೈನರ್ ನ ಇಮೇಜ್ ಕ್ರಿಯೇಟರ್ ಬಳಸಿ ಚಿತ್ರ ರಚಿಸಲಾಗಿದೆ

ಐಐಟಿ ಬಾಂಬೆಯ ಸಂಶೋಧಕರು ಶಾಕ್‌ವೇವ್-ಆಧಾರಿತ ಸೂಜಿ-ಮುಕ್ತ ಸಿರಿಂಜ್ ಅನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ. ಈ ಮೂಲಕ ಸೂಜಿಗಳಿಲ್ಲದೆ ಔಷಧಿಗಳನ್ನು ಪೂರೈಸುವ ಮಾರ್ಗವನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ.

लिखा गया
Research Matters
ಅತ್ಯಂತ ಪ್ರಾಚೀನ ವಸ್ತುವಿನ ಅಧ್ಯಯನ

ಹಯಾಬುಸಾ ಎಂದರೆ ವೇಗವಾಗಿ ಚಲಿಸುವ ಜಪಾನೀ ಬೈಕ್ ನೆನಪಿಗೆ ತಕ್ಷಣ ಬರುವುದು ಅಲ್ಲವೇ? ಆದರೆ ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ - (ಜಾಕ್ಸ, JAXA) ತನ್ನ ಒಂದು ನೌಕೆಯ ಹೆಸರು ಹಯಾಬುಸಾ 2 ಎಂದು ಇಟ್ಟಿದ್ದಾರೆ. ಈ ನೌಕೆಯನ್ನು ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ ಸೌರವ್ಯೂಹದಾದ್ಯಂತ ಸಂಚರಿಸಿ ರುಯ್ಗು (Ryugu) ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸಂಪರ್ಕ ಸಾಧಿಸುವ ಉದ್ದೇಶದಿಂದ  ಡಿಸೆಂಬರ್ 2014 ರಲ್ಲಿ ಉಡಾವಣೆ ಮಾಡಿತ್ತು. ಇದು ಸುಮಾರು ಮೂವತ್ತು ಕೋಟಿ (300 ಮಿಲಿಯನ್) ಕಿಲೋಮೀಟರ್ ದೂರ ಪ್ರಯಾಣಿಸಿ 2018 ರಲ್ಲಿ ರುಯ್ಗು ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸ್ಪರ್ಶಿಸಿತ್ತು. ಅಲ್ಲಿಯೇ ಕೆಲ ತಿಂಗಳು ಇದ್ದು ಮಾಹಿತಿ ಮತ್ತು ವಸ್ತು ಸಂಗ್ರಹಣೆ ಮಾಡಿ, 2020 ಯಲ್ಲಿ ಯಶಸ್ವಿಯಾಗಿ ಹಿಂತಿರುಗಿತ್ತು.

लिखा गया
Research Matters
ಕಾಂಕ್ರೀಟ್‌ ಪರೀಕ್ಷೆಗೆ ಪ್ರೋಬ್‌

ಕಾಂಕ್ರೀಟ್‌ನಲ್ಲಿ ಹುದುಗಿರುವ ರೆಬಾರ್‌ಗಳಲ್ಲಿನ ತುಕ್ಕು ಪ್ರಮಾಣವನ್ನು ಮಾಪಿಸಲು ವಿಜ್ಞಾನಿಗಳು ಒಂದು ಹೊಸ ತಪಾಸಕವನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ.

लिखा गया
Research Matters
‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ

ವೈರಲ್ ಸೋಂಕುಗಳು ಮತ್ತು ಸ್ವಯಂ ನಿರೋಧಕ ಕಾಯಿಲೆಗಳಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ ‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ. 

लिखा गया
Research Matters
ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳು

ಐಐಟಿ ಬಾಂಬೆ ಯ ಬ್ಯಾಟರಿ ಪ್ರೋಟೋಟೈಪಿಂಗ್ ಲ್ಯಾಬ್ ನ ಸಂಶೋಧಕರು ಇಂಧನ (ಶಕ್ತಿ) ಶೇಖರಣಾ ಸಾಧನವಾಗಿರುವ ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸುತ್ತಿದ್ದಾರೆ. 

Loading content ...
Loading content ...
Loading content ...
Loading content ...
Loading content ...