मुंबई
पिघले हुए लोहे के ठंडा होने की गति से उसके गुणों का निर्धारण होता है

Summer201408, CC BY-SA 4.0, विकिमीडिआ कॉमन्स

ढलवाँ या कच्चा लोहे (कार्बन के साथ लोहे का एक मिश्र धातु) का प्रयोग मशीन और ऑटोमोबाइल भागों को बनाने के लिए व्यापक रूप से किया जाता है। अपने तरल रूप में यह आसानी से बह सकता है, जिससे इसे सांचों में ड़ालकर विभिन्न भागों के आकार को जटिल विवरण के साथ निर्मित किया जा सकता है। यह पिटवाँ लोहे की तुलना में कम नमनीय एवं लचीला होता है, साथ ही स्टील की तुलना में भी कम कठोर होता है। परन्तु इसका गलनांक, लोहे के अन्य रूपों की तुलना में कम होता है और इसे आसानी से संकुचित नहीं किया जा सकता है।

ढलवाँ लोहे (कास्ट आयरन) का एक अधिक नमनीय प्रकार, जिसे गोलाकार ग्रेफाइट लोहा (स्फेरॉइडल ग्रेफाइट आयरन) कहा जाता है। इसका उपयोग मोटर वाहन के भागों को बनाने के लिए वृहद रूप से  किया जाता है। लोहे का लचीलापन, कठोरता और गुणवत्ता इस बात से निर्धारित होती है कि सांचों में लोहा कितनी तेजी से ठंडा होता है। हाल के एक अध्ययन में, भारतीय प्रौद्योगिकी संस्थान मुंबई के शोधकर्ताओं ने पिघले हुए गोलाकार ग्रेफाइट लोहे को ठंडा करने की दिशा में एक नवीन मॉडल का प्रस्ताव दिया हैं। यह मॉडल, बेहतर गुणवत्ता वाले ढलवाँ लोहा बनाने के लिए, लौह-उद्योगों में शीतलन प्रक्रिया को अनुकूलित कर सकता है। यह अध्ययन मेटलर्जिकल एंड मैटेरियल्स ट्रांसक्शन्स बी नामक पत्रिका में प्रकाशित हुआ है। इस शोधकार्य को आंशिक रूप से जॉन डीरे इंडिया प्राइवेट लिमिटेड (John Deere India Pvt. Ltd.) द्वारा वित्त पोषित किया गया।

गोलाकार ग्रेफाइट लोहा, लौह अयस्क से शुद्ध पिघले हुए लोहे को निकालकर, इसमें कार्बन, सिलिकॉन और अन्य तत्वों को मिलाकर एवं वांछित आकार के सांचों में ठंडा करने के उपरान्त मिलता है। इसमें थोड़ी मात्रा में कार्बन घुल जाती  है और शेष माइक्रोमीटर के माप के ग्रेफाइट पिंड (नोड्यूल) के रूप में  होता है। हालांकि, इसमें एक मुख्य समस्या यह है कि जटिल आकार के सांचों में पिघला हुआ लोहा समान रूप से ठंडा नहीं हो पाता है, जिससे ग्रेफाइट नोड्यूल का असमान आकार और वितरण होता है।  असमान रूप से वितरित ग्रेफाइट नोड्यूल, घटक को कमजोर बना सकते हैं और पुर्जे संचालन के दौरान टूट सकते है। सामान्यतः, छोटे आकार के और समान रूप से वितरित नोड्यूल बेहतर यांत्रिक गुणों, जैसे उच्च लचीलापन और दृढ़ता की ओर ले जाते हैं" अध्ययन के लेखक, भारतीय प्रौद्योगिकी संस्थान, मुंबई के प्राध्यापक श्यामप्रसाद करागड्डे कहते हैं।

लोहे के उत्पादनकर्ता विभिन्न उत्पादन मानकों जैसे सतह क्षेत्र और सांचों की गहराई, वह तापमान जिस  पर पिघला हुआ लोहा इनमें डाला जाता है, एवं शीतलन दर इत्यादि में सुधार करके ग्रेफाइट नोड्यूल के आकार और वितरण को नियंत्रित कर सकते हैं। हालाँकि, इन मापदंडों को अनुकूलित करने के लिए एक ऐसी दूरदर्शिता की आवश्यकता होती है, जिसे कंप्यूटर सिमुलेशन मॉडल प्रदान कर सकते हैं। वर्तमान अध्ययन में, शोधकर्ताओं ने पिघले हुए लोहे की शीतलन प्रक्रिया का अनुकरण करने  के लिए एक बेहतर मॉडल बनाया है और इसे ग्रेफाइट नोड्यूल के गुणों से जोड़ दिया है।

कंप्यूटर सिमुलेशन में, शोधकर्ताओं ने पिघले हुए गोलाकार ग्रेफाइट लोहे के ठंडा होने तक उसके  तापमान को कम-कम समय के अंतराल पर गणना करने के लिए एक मैक्रो-मॉडल का उपयोग किया। उन्होंने माइक्रो-मॉडल का उपयोग करके विभिन्न तापमानों पर कई ग्रेफाइट नोड्यूल की संवृद्धि का पता लगाया। मुख्य तौर पर, माइक्रो-मॉडल ने शीतलन के तीन अलग-अलग चरणों का अनुकरण किया। इसे तरल लोहे से घिरे ग्रेफाइट नोड्यूल, दूसरा लोहे के खोल (गोले) से घिरे नोड्यूल और तीसरा पूरी तरह से जमे हुए लोहे के चरणों में देखा गया। प्रारंभिक चरण के दौरान, ग्रेफाइट नोड्यूल सबसे तेजी से विकसित होते हैं। पिछले मॉडलों में शोधकर्ताओं ने इस चरण पर विचार नहीं किया था, क्योंकि यह बहुत अल्पकालिक होता है। "प्रारंभिक चरण के लिए हमारे गणितीय मॉडल का प्रयोग करने से ग्रेफाइट के आकार और वितरण का बेहतर पूर्वानुमान लगाया जा सका", प्राध्यापक श्यामप्रसाद करागड्डे बताते हैं।

उद्योगों में निर्मित घटकों का आकार आमतौर पर कुछ दसियों सेंटीमीटर के बराबर होता है, जबकि ग्रेफाइट नोड्यूल इससे लगभग दस लाख गुना छोटे, माइक्रोमीटर के माप  के होते हैं। इसलिए प्रत्येक ग्रेफाइट नोड्यूल के विकास का पता करना मुश्किल है। "इसके लिए, हमारे मैक्रो-माइक्रो मॉडल छोटे क्षेत्रों  (जैसे कि कुछ मिलीमीटर लम्बे) में ग्रेफाइट नोड्यूल्स के औसत आकार और संख्या का पूर्वानुमान करते हैं। इस छोटे क्षेत्र को, पूरे घटक को कई छोटे संस्करणों में विभाजित करके प्राप्त किया जाता है," प्राध्यापक श्यामप्रसाद करागड्डे टिप्पणी करते हैं।

क्योंकि कि मैक्रो-माइक्रो मॉडल औसत पूर्वानुमान देता है, इसलिए यह बहुत सटीक नहीं है। पूर्वानुमानो को बेहतर बनाने के लिए, शोधकर्ताओं ने और आगे एकल, पृथक ग्रेफाइट नोड्यूल का अध्ययन किया। एक ग्रेफाइट नोड्यूल मुख्य रूप से तरल लोहे से निकली कार्बन के नोड्यूल में विसरण के माध्यम से विकसित होता है। पिघले हुए लोहे के पूरी तरह से जमने के बाद, नोड्यूल कुछ और बढ़ते है क्योंकि आसपास के लोहे से अघुलनशील कार्बन इसमें जुड़ जाती है। शोधकर्ताओं ने 'विकृत ग्रिड' नामक एक विधि का उपयोग करके एकल ग्रेफाइट नोड्यूल के इस विकास का अनुकरण किया। इसमें उन्होंने ग्रिड नामक तरल लोहे की छोटी मात्रा में प्रसार का अध्ययन किया। "विकृत ग्रिड विधि, जो एकल ग्रेफाइट नोड्यूल के लिए बहुत सटीक है, ने हमें मैक्रो-माइक्रो मॉडल के लिए एक सुधार कारक दिया है। हम इसे एक बहुस्तरीय दृष्टिकोण कहते हैं क्योंकि हमने दो अलग-अलग पैमानों के दो मॉडलों से जानकारी का उपयोग किया है,” प्राध्यापक करागड्डे कहते हैं।

अपने सिमुलेशन को सत्यापित करने के लिए, शोधकर्ताओं ने एक प्रयोग स्थापित किया। उन्होंने विभिन्न गहराई और शीतलन की दरों के सांचों में गोलाकार ग्रेफाइट लोहे के ब्लॉक बनाए। गहरे सांचों में लोहे,  समान द्रव्यमान होते हुए भी, छोटे सतह क्षेत्र होने के कारण, सबसे धीमी गति से ठंडे होते हैं। उन्होंने शीतल होते लोहे के तापमान को मापा और ग्रेफाइट नोड्यूल के गुणों का अध्ययन किया, और उनकी तुलना उनके सिमुलेशन से किये गए पूर्वानुमानों के साथ की।

प्रारंभिक तापमान, उनके सिमुलेशन में की गई गणना के आकलन से मेल खाते थे, लेकिन शीतलन के दूसरे चरण के बाद गणना किए गए  तापमान, धीरे-धीरे ठंडे होने वाले सांचों में देखे गए तापमानों की तुलना में लगभग 10-15 मिनट पहले ही कम (ठंडा) हो गए। शोधकर्ताओं के अनुसार, ये विचलन इसलिए हुए क्योंकि सांचों से उत्त्पन ऊष्मा की क्षति का मॉडल बनाना चुनौतीपूर्ण है। प्राध्यापक करागड्डे बताते हैं कि, “सिलिका रेत जैसे रेत से बने सांचों में कुछ नमी होती है जो गर्म तरल लोहे के  डालने पर वाष्पित हो जाती है। ये धुएं और रेत में छोटी दरारें ऊष्मा के प्रवाह को बाधित करती हैं और इसका मॉडल बनाना मुश्किल होता है”, प्रोफेसर करगड्दे समझाते हैं। "हालांकि, इन विचलनों से ग्रेफाइट नोड्यूल की अंतिम भविष्यवाणियों में महत्वपूर्ण परिवर्तन नहीं हो सकते हैं”, वे आगे बताते है।

शोधकर्ताओं ने ठंडे ग्रेफाइट नोड्यूल के अंतिम आकार और वितरण के लिए अपने लोहे के ब्लॉक से नमूनों का विश्लेषण किया। पिछले शोध कार्यों के उनके अवलोकन और डेटा उनके अंतिम सिमुलेशन परिणामों से पूरी तरह से मेल खाते हैं, हालांकि, शीतलन के दौरान आकार की उनकी अस्थायी  भविष्यवाणियां उसके वास्तविक परिमाण से लगभग एक चौथाई से विचलित हो गयी। हालाँकि, इन अस्थायी भविष्यवाणियों की अपेक्षा अंतिम पूर्वानुमान को विकृत ग्रिड विधि का उपयोग करके ठीक किया जा सकता है और ये अधिक सटीक भी हैं। सामान्य तौर पर उन्होंने देखा कि जब पिघला हुआ लोहा धीरे-धीरे ठंडा होता है (जैसे गहरे सांचों में ड़ालने पर) तब ग्रेफाइट नोड्यूल छोटे और अधिक समान रूप से वितरित होते हैं।

इस अध्ययन ने पिघले हुए लोहे के ठंडा होने के सभी तीन चरणों का मॉडल तैयार किया और ग्रेफाइट नोड्यूल के बारे में बेहतर पूर्वानुमान करते हुए एक नया बहुस्तरीय दृष्टिकोण प्रस्तुत किया। "हमारे सिमुलेशन मॉडल, लोहे के निर्माताओं को महत्वपूर्ण सामग्री अपव्यय से बचने और समय बचाने में मदद कर सकते हैं। अब हम  ढलवाँ लोहे की अन्य किस्मों के पूर्वानुमान  में सुधार करना चाहते हैं जिनकी एक अलग रासायनिक संरचना है," प्राध्यापक करागड्डे ने बात खत्म करते हुए कहा।

Hindi

Recent Stories

लिखा गया
Research Matters
Industrial Pollution

हाइड्रोजन आधारित प्रक्रियाओं में उन्नत उत्प्रेरकों और नवीकरणीय ऊर्जा के समावेश से स्टील उद्योग में कार्बन विमुक्ति के आर्थिक और औद्योगिक रूप से व्यवहार्य समाधानों का विकास ।

लिखा गया
Research Matters
Representative image of rust: By peter731 from Pixabay

दो वैद्युत-रासायनिक तकनीकों के संयोजन से, शोधकर्ता औद्योगिक धातुओं पर लेपित आवरण पर संक्षारण की दर को कुशलतापूर्वक मापने में सफल रहे।

लिखा गया
Research Matters
प्रतिनिधि चित्र श्रेय: पिक्साहाइव

उत्तम आपदा प्रबंधन एवं आर्थिक सुरक्षा की दृष्टि से, राज्य की वित्त व्यवस्था पर आपदा के प्रभाव का आकलन करने हेतु ‘डिजास्टर इंटेंसिटी इंडेक्स’ का उपयोग करते शोधकर्ता

लिखा गया
Research Matters
Lockeia gigantus trace fossils found from Fort Member. Credit: Authors

ಜೈ ನಾರಾಯಣ್ ವ್ಯಾಸ್ ವಿಶ್ವವಿದ್ಯಾಲಯದ ಸಂಶೋಧಕರು ಜೈಸಲ್ಮೇರ್ ನಗರದ ಬಳಿಯ ಜೈಸಲ್ಮೇರ್ ರಚನೆಯಲ್ಲಿ ಲಾಕಿಯಾ ಜೈಗ್ಯಾಂಟಸ್ ಪಳೆಯುಳಿಕೆಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ. ಇದು ಭಾರತದಿಂದ ಇಂತಹ ಪಳೆಯುಳಿಕೆಗಳ ಮೊದಲ ದಾಖಲೆ ಮಾತ್ರವಲ್ಲ, ಇದುವರೆಗೆ ಪತ್ತೆಯಾದ ಅತಿದೊಡ್ಡ ಲಾಕಿಯಾ ಕುರುಹುಗಳು.

लिखा गया
Research Matters
ಇಂಡೋ-ಬರ್ಮೀಸ್ ಪ್ಯಾಂಗೊಲಿನ್ (ಮನಿಸ್ ಇಂಡೋಬರ್ಮಾನಿಕಾ). ಕೃಪೆ: ವಾಂಗ್ಮೋ, ಎಲ್.ಕೆ., ಘೋಷ್, ಎ., ಡೋಲ್ಕರ್, ಎಸ್. ಮತ್ತು ಇತರರು.

ಕಳ್ಳತನದಿಂದ ಸಾಗಾಟವಾಗುತ್ತಿದ್ದ ಹಲವು ಪ್ರಾಣಿಗಳ ನಡುವೆ ಪ್ಯಾಂಗೋಲಿನ್ ನ ಹೊಸ ಪ್ರಭೇದವನ್ನು ಪತ್ತೆ ಮಾಡಲಾಗಿದೆ.

लिखा गया
Research Matters
ಸ್ಪರ್ಶರಹಿತ ಬೆರಳಚ್ಚು ಸಂವೇದಕದ ಪ್ರಾತಿನಿಧಿಕ ಚಿತ್ರ

ಸಾಧಾರಣವಾಗಿ, ಫೋನ್ ಅನ್ನು ಅನ್ಲಾಕ್ ಮಾಡುವಾಗ ಅಥವಾ ಕಛೇರಿಯಲ್ಲಿ ಬಯೋಮೆಟ್ರಿಕ್ ಸ್ಕ್ಯಾನರುಗಳನ್ನು ಬಳಸುವಾಗ, ನಿಮ್ಮ ಬೆರಳನ್ನು ಸ್ಕ್ಯಾನರಿನ ಮೇಲ್ಮೈಗೆ ಒತ್ತ ಬೇಕಾಗುತ್ತದೆ. ಬೆರಳಚ್ಚುಗಳನ್ನು ಸೆರೆಹಿಡಿಯುವುದು ಹೀಗೆ. ಆದರೆ, ಹೊಸ ಸಂಶೋಧನೆಯೊಂದು ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಇನ್ನಷ್ಟು ಸ್ವಚ್ಛ, ಸುಲಭ ಮತ್ತು ಹೆಚ್ಚು ನಿಖರವಾಗಿಸುವ ವಿಧಾನವನ್ನು ರೂಪಿಸಿದೆ. ಸಾಧನವನ್ನು ಮುಟ್ಟದೆಯೇ ಬೆರಳಚ್ಚನ್ನು ಸಂಗ್ರಹಿಸುವ ಮಾರ್ಗವನ್ನು ಹುಡುಕಿದೆ.

लिखा गया
Research Matters
ಮೈಕ್ರೋಸಾಫ್ಟ್ ಡಿಸೈನರ್ ನ ಇಮೇಜ್ ಕ್ರಿಯೇಟರ್ ಬಳಸಿ ಚಿತ್ರ ರಚಿಸಲಾಗಿದೆ

ಐಐಟಿ ಬಾಂಬೆಯ ಸಂಶೋಧಕರು ಶಾಕ್‌ವೇವ್-ಆಧಾರಿತ ಸೂಜಿ-ಮುಕ್ತ ಸಿರಿಂಜ್ ಅನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ. ಈ ಮೂಲಕ ಸೂಜಿಗಳಿಲ್ಲದೆ ಔಷಧಿಗಳನ್ನು ಪೂರೈಸುವ ಮಾರ್ಗವನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದಾರೆ.

लिखा गया
Research Matters
ಅತ್ಯಂತ ಪ್ರಾಚೀನ ವಸ್ತುವಿನ ಅಧ್ಯಯನ

ಹಯಾಬುಸಾ ಎಂದರೆ ವೇಗವಾಗಿ ಚಲಿಸುವ ಜಪಾನೀ ಬೈಕ್ ನೆನಪಿಗೆ ತಕ್ಷಣ ಬರುವುದು ಅಲ್ಲವೇ? ಆದರೆ ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ - (ಜಾಕ್ಸ, JAXA) ತನ್ನ ಒಂದು ನೌಕೆಯ ಹೆಸರು ಹಯಾಬುಸಾ 2 ಎಂದು ಇಟ್ಟಿದ್ದಾರೆ. ಈ ನೌಕೆಯನ್ನು ಜಪಾನಿನ ಬಾಹ್ಯಾಕಾಶ ಸಂಸ್ಥೆ ಸೌರವ್ಯೂಹದಾದ್ಯಂತ ಸಂಚರಿಸಿ ರುಯ್ಗು (Ryugu) ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸಂಪರ್ಕ ಸಾಧಿಸುವ ಉದ್ದೇಶದಿಂದ  ಡಿಸೆಂಬರ್ 2014 ರಲ್ಲಿ ಉಡಾವಣೆ ಮಾಡಿತ್ತು. ಇದು ಸುಮಾರು ಮೂವತ್ತು ಕೋಟಿ (300 ಮಿಲಿಯನ್) ಕಿಲೋಮೀಟರ್ ದೂರ ಪ್ರಯಾಣಿಸಿ 2018 ರಲ್ಲಿ ರುಯ್ಗು ಕ್ಷುದ್ರಗ್ರಹವನ್ನು ಸ್ಪರ್ಶಿಸಿತ್ತು. ಅಲ್ಲಿಯೇ ಕೆಲ ತಿಂಗಳು ಇದ್ದು ಮಾಹಿತಿ ಮತ್ತು ವಸ್ತು ಸಂಗ್ರಹಣೆ ಮಾಡಿ, 2020 ಯಲ್ಲಿ ಯಶಸ್ವಿಯಾಗಿ ಹಿಂತಿರುಗಿತ್ತು.

लिखा गया
Research Matters
ಕಾಂಕ್ರೀಟ್‌ ಪರೀಕ್ಷೆಗೆ ಪ್ರೋಬ್‌

ಕಾಂಕ್ರೀಟ್‌ನಲ್ಲಿ ಹುದುಗಿರುವ ರೆಬಾರ್‌ಗಳಲ್ಲಿನ ತುಕ್ಕು ಪ್ರಮಾಣವನ್ನು ಮಾಪಿಸಲು ವಿಜ್ಞಾನಿಗಳು ಒಂದು ಹೊಸ ತಪಾಸಕವನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸಿದ್ದಾರೆ.

लिखा गया
Research Matters
‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ

ವೈರಲ್ ಸೋಂಕುಗಳು ಮತ್ತು ಸ್ವಯಂ ನಿರೋಧಕ ಕಾಯಿಲೆಗಳಲ್ಲಿ ಮೈಕ್ರೋ ಆರ್‌ಎನ್‌ಎ ‘ದ್ವಿಪಾತ್ರ’ದಲ್ಲಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ. 

लिखा गया
Research Matters
ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳು

ಐಐಟಿ ಬಾಂಬೆ ಯ ಬ್ಯಾಟರಿ ಪ್ರೋಟೋಟೈಪಿಂಗ್ ಲ್ಯಾಬ್ ನ ಸಂಶೋಧಕರು ಇಂಧನ (ಶಕ್ತಿ) ಶೇಖರಣಾ ಸಾಧನವಾಗಿರುವ ರೀಚಾರ್ಜ್ ಮಾಡಬಹುದಾದ ಬ್ಯಾಟರಿಗಳ ಬಗ್ಗೆ ಅಧ್ಯಯನ ನಡೆಸುತ್ತಿದ್ದಾರೆ. 

Loading content ...
Loading content ...
Loading content ...
Loading content ...
Loading content ...